4回目 グラフ作成ライブラリmlibの使い方、 図形描画

グラフィックウインドウの説明 Line, Rect, Circle plot_pen, アニメーション 総合演習、放物線アニメーション説明 Pause, delay

グラフィックウインドウの設定

・グラフィックウインドウは図が描画されるウインドウである

- ・位置、サイズはdef.h内最終行付近のsGW構造体を変更してもよい。標準では定数 MAINWIN_W と MAINWIN_H を変更すれば自動的に変更されるようになっている。
- Set_figure()関数により、複数のフィギュアウインドウを配置可能である。
 ・各フィギュアウインドウの左、右、上、下マージンはdef.h190行目付近 MERGIN_L, MERGIN_R, MERGIN_T, MERGIN_Bで変更できる。
 ・特にy軸の数値ラベル幅が広いときなど、適宜MERGIN_Lを大きくする必要がある。

•Plot_1d(), Plot_2d() 関数等でグラフを作成することができる。

グラフィックウインドウへの図形描画

(0,0)

グラフィックウインドウは独立した座標系 を持ち、ピクセル単位で座標を指定する。 左上(0,0)、右下(sGW.w, sGW.h)

(sGW.w , sGW.h)

void Line(int x1,int y1,int x2,int y2)

グラフィックウインドウに<u>直線を引く</u> x1,y1は始点の座標、x2,y2は終点の座標

void Rect(int x1,int y1,int x2,int y2,int bfflug)

グラフィックウインドウに四角形を描く x1,y1は左上の座標、x2,y2は右下の座標 0 : 枠のみ。枠内は描画しない。 bfflug → 1 : 枠と枠内を塗りつぶす それ以外 : 枠と枠内を白で塗りつぶす(消去)

void Circle(int x1, int y1, int x2, int y2, int bfflug)

グラフィックウインドウに<mark>楕円を描く。</mark> 指定した座標の四角形に接する楕円を描く。 Bfflugの意味はRect関数と同じ

グラフィックウインドウの描画色指定

void Plot_pen(int pf, int pw, int pc)

グラフィックウインドウに描画する色を指定する。

図形描画だけでなく、グラフのプロット関数の線色、線種指定にも使う

pf:	pw:	pc:
0-実線	ペンの太さ。	0-黒
1-破線	ピクセル単位	1-赤
2 - 点線	で指定。	2-緑
3 - 1点鎖線	0は1ピクセル	3-青
4-2点鎖線		4-黄色
5 - 描画しない		5-マゼンダ(水色)
		6-シアン(ピンク)
		7-白

pcに8以上を指定していれば、Plot()関数等のグラフ描画関数を呼び出す毎 に自動的に色を0~6まで巡回させる。

色を指定するときは、LINE関数、RECT関数等より前にこの関数で指定する。 1回指定すれば、その色、線種の状態は保持される。

演習6

6-1. エディットボックス0,1,2に入力した整数値をそれぞれ、Plot_pen()関数の3つ の引数に対応させて線種の指定を行い、プッシュボタン0,1に対応して、それ ぞれ、直線、四角を描画するプログラムを作成せよ。尚、プッシュボタン2は四 角の範囲を白で塗りつぶし、図の消去を行う

物体の移動アニメーション

四角を移動させるには、for文で座標を変えながら表示すればよい?

<pre>for(i=0;i>100;i++){ Plot_pen(0,1,2); Rect(i,0,i+50,50,1); }</pre>		動いた分だけ消さな いと移動したことに ならない
<pre>for(i=0;i>100;i++){ Plot_pen(0,1,2); Rect(i,0,i+50,50,1); Plot_pen(0,1,7); 白色で描画 Rect(i,0,i+50,50,1); }</pre>	白色で描画すること で、書いた■を消す 実行しても何も 表示されない。	Line,Rect,Circle関数で は、メモリの仮想領域 に描画するだけで、画 面への更新は行わない
<pre>for(i=0;i>100;i++){ Plot_pen(0,1,2); Rect(i,0,i+50,50,1); Plot_pen(0,1,7); Rect(i,0,i+50,50,1); UpdateWindow(hWnd); }</pre>	この関数呼び出しで 画面が更新される。 アニメーションでは 描画繰り返し毎に呼 び出す必要あり	実行しても書いて、消 した後に画面更新して いるので、白い■しか 表示されない(何も表 示されない)

UpdateWindow(hWnd)

強制的に画面の再描画を行う。

物体の移動アニメーション

<pre>for(i=0;i>100;i++){ Plot_pen(0,1,2); Rect(i,0,i+50,50,1); UpdateWindow(hWnd); Plot_pen(0,1,7); Rect(i,0,i+50,50,1); }</pre>	ー瞬■が見える よう のり り早	度が速すぎて動いている に見えない。(画面表示 リフレッシュレート60Hzよ とは面しても無駄)	
<pre>for(i=0;i>100;i++){ Plot_pen(0,1,2); Rect(i,0,i+50,50,1); UpdateWindow(hWnd); Delay(10); 10ms待つ Plot_pen(0,1,7);</pre>	時間稼ぎすることで、 アニ 動いて見えるが、消 の えてしまう	ニメーション部の繰り返し 最後が、消去で終わるの 描画した図が、残らない 待ち時間をmsecミリ秒	
<pre>Plot_pen(0,1,7); Rect(i,0,i+50,50,1); }</pre>	void Delay(int msec) で指定		
<pre>for(i=0;i>100;i++){ Plot_pen(0,1,7); Rect(i-1,0,i+50-1,50,1); Plot_pen(0,1,2); Rect(i,0,i+50,50,1); UpdateWindow(hWnd); Delay(10); }</pre>	先に、ひとつ前の 座標で■を消す。 その後、現在の 座標に描画 4. 繰	D基本 去の位置の物体を消す たな座標の物体を描画 面の更新 り返し時間調整	

リアルタイムキー入力

Short GetAsyncKeyState(int key)

win32APIの関数でkeyに対応する数値(仮想文字コード)のキーが押されているかどうかをリアルタイムに判定する。押されてなければ0、押されていれば負の値を返す。 キーとその数値は定数定義されている。

定義定数	押されたキー	定義定数	押されたキー
VK_BACK	BackSpace	VK_SPACE	Space
VK_TAB	Таb	VK_LEFT	\leftarrow
VK_RETURN	Enter(Return)	VK_UP	\uparrow
VK_SHIFT	Shift(左右とも)	VK_RIGHT	\rightarrow
VK_ESCAPE	Esc	VK_DOWN	\downarrow

アルファベットは「A」なら¹A¹のようにシングルコーテーションを使って指定

```
short a=0;
While(a<0){
    a=GetAsyncKeyState( VK_LEFT );
}
Printf("今、左キーが押されました¥n");</pre>
```

実行しても何も起こらないが、 左向きの矢印キーが押されると、 「今、左キーが押されました」と 表示される。

演習7

7-1. 矢印キーの左、右、下、上キーに対応して、円を動かすプログラムを作成せよ。 なお、ESCキーで終了するものとする。

演習8

A-1. ボールを出射角度 θ、初速度v₀で投げ上げた時のボールの放物運動のアニ メーションを作成せよ。 尚、θ、v₀はそれぞれ、エディットボタン0,1から入力する。 座標系は球の初期位置を原点とする。また、重力加速度は9.8m/s²とする。

アルゴリズムのヒント

1. ボールの運動方程式を立てる。

ma = mg

2. ボールの位置を時間の関数で表す

 $x(t) = (v_0 \cos \theta)t \qquad z(t) = (v_0 \sin \theta)t - \frac{1}{2}gt^2$

3. ボールの座標系とグラフィックウインドウの座標系の変換式を考える X = f(x) Z = g(z)

4. アニメーションの手法を考える
 例)ある時間間隔 dt 毎のボールの軌跡を描く
 for文等で以下を繰り返し
 時間 t のボールの座標を計算
 実座標をグラフィックウインドウ座標に変換
 ボールを描画(Circle 関数)
 時間を更新(t=t+dt)